翻訳と辞書
Words near each other
・ Geometric Technologies, Inc.
・ Geometric terms of location
・ Geometric tomography
・ Geometric topology
・ Geometric topology (disambiguation)
・ Geometric topology (object)
・ Geometric tortoise
・ Geometric transformation
・ Geometrical acoustics
・ Geometrical frustration
・ Geometrical optics
・ Geometrical-optical illusions
・ Geometrically and materially nonlinear analysis with imperfections included
・ Geometrically regular ring
・ Geometrics
Geometric–harmonic mean
・ Geometridites
・ Geometrimima
・ Geometrinae
・ Geometrism
・ Geometrization conjecture
・ Geometrization theorem
・ Geometrized unit system
・ Geometrodes
・ Geometrodynamics
・ Geometrography
・ Geometroidea
・ Geometrothermodynamics
・ Geometry
・ Geometry & Topology


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Geometric–harmonic mean : ウィキペディア英語版
Geometric–harmonic mean

In mathematics, the geometric–harmonic mean M(''x'', ''y'') of two positive real numbers ''x'' and ''y'' is defined as follows: we form the geometric mean of ''g''0 = ''x'' and ''h''0 = ''y'' and call it ''g''1, i.e. ''g''1 is the square root of ''xy''. We also form the harmonic mean of ''x'' and ''y'' and call it ''h''1, i.e. ''h''1 is the reciprocal of the arithmetic mean of the reciprocals of ''x'' and ''y''. These may be done sequentially (in any order) or simultaneously.
Now we can iterate this operation with ''g''1 taking the place of ''x'' and ''h''1 taking the place of ''y''. In this way, two sequences (''g''''n'') and (''h''''n'') are defined:
:g_ = \sqrt
and
:h_ = \frac + \frac}
Both of these sequences converge to the same number, which we call the geometric–harmonic mean M(''x'', ''y'') of ''x'' and ''y''. The geometric–harmonic mean is also designated as the harmonic–geometric mean. (cf. Wolfram MathWorld below.)
The existence of the limit can be proved by the means of Bolzano–Weierstrass theorem in a manner almost identical to the proof of existence of arithmetic–geometric mean.
==Properties==
M(''x'', ''y'') is a number between the geometric and harmonic mean of ''x'' and ''y''; in particular it is between ''x'' and ''y''. M(''x'', ''y'') is also homogeneous, i.e. if ''r'' > 0, then M(''rx'', ''ry'') = ''r'' M(''x'', ''y'').
If AG(''x'', ''y'') is the arithmetic–geometric mean, then we also have
:M(x,y) = \frac,\frac)}

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Geometric–harmonic mean」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.